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1 ABSTRACT 
Public transit is an important contributor to sustainable transportation as well as a public 

service that makes necessary travel possible for many. Poor transit transfers can lead to both a real 
and perceived reduction in convenience and safety, especially for people with disabilities. Poor 
transfers can expose riders to inclement weather and crime, and they can reduce transit ridership 
by motivating riders who have the option of driving or using paratransit to elect a more expensive 
and inefficient travel mode. Unfortunately, knowledge about inconvenient, missed, and unsafe 
transit transfers is sparse and incomplete. 

We show that crowdsourced public transit ridership data, which is more scalable than 
conducting traditional surveys, can be used to analyze transit transfers. The Tiramisu Transit app 
merges open transit data with information contributed by users about which trips they take. We 
use Tiramisu data to do origin-destination analysis and identify connecting trips to create a better 
understanding of where and when poor transfers are occurring in the Pittsburgh region. We merge 
the results with data from other open public data sources, including crime data, to create a data 
resource that can be used for planning and identification of locations where bus shelters and other 
infrastructure improvements may facilitate safer and more comfortable waits and more accessible 
transfers. We use generalizable methods to ensure broader value to both science and practitioners. 

We present a case study of the Pittsburgh region, in which we identified and characterized 338 
transfers from 142 users. We found that 66.6% of transfers were within 0.4 km (0.25 mi.) and 
44.1% of transfers were less than 10 minutes. We identified the geographical distribution of 
transfers and found several highly-utilized transfer locations that were not identified by the Port 
Authority of Allegheny County as recommended transfer points, and so might need more planning 
attention. We cross-referenced transfer location and wait time data with crime levels to provide 
additional planning insight. 

2 INTRODUCTION 
Public transit is an important contributor to sustainable transportation as well as a public 

service that makes necessary travel possible for many. Poor transit transfers can lead to both a real 
and perceived reduction in convenience and safety. Long transfers and traversal between transfer 
stops can be especially problematic for people with disabilities due to exposure to inclement 
weather and the risk of theft and other crimes, while tight transfers can be problematic due to 
inability to run or the need to use a (potentially longer) wheelchair accessible route between stops 
(National Council on Disability, 2015). This aligns with findings that real-time arrival information 
led to higher perceptions of safety for riders without disabilities (Ferris et al., 2010) and that 
personal safety is one of the most important characteristics of a satisfactory transfer (Iseki and 
Taylor, 2010). Knowledge about safety problems like these and missed transit transfers is sparse 
and incomplete since it can be time-consuming and expensive to collect travel data from 
consumers.  

Missed transfers and long waits can be inconvenient, suppress optional travel, and expose 
riders to inclement weather and crime. Riders with the option of driving may abandon transit (or 
never chose it) due to the perception of unsafe and poor transfers. Poor transfers and the resulting 
exposure to adverse conditions can also motivate riders who have the option of using paratransit 
to elect the more expensive travel mode. Good data is needed on exactly how long people are 
waiting and what pedestrian patterns are occurring for transfers where stops are not co-located. 

Some of this information can be deduced from smartcard fare data by looking at points of 
payment across each piece of the trip. However, for many bus trips this only provides limited 
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insight on the intended trip of the rider due to the lack of origin-destination (O-D) ground truth, 
since riders may pay at one end of the trip but not reveal the other end. This makes it difficult to 
determine if a rider used a common stop for the transfer or a wider gap in order to run an errand 
or another pedestrian activity before transferring. Likewise, it can be difficult to determine the 
origin or destination stop of the overall trip, thus making it very hard to assess demand for more 
direct routes. It is possible to make some initial guesses based on historical patterns, but our 
machine learning analyses using ground truth O-D stop data have shown performance for such 
estimates to be below the level needed for planning purposes. 

Unfortunately, it is also hard to disambiguate intentional and unintentional transfer gaps. As 
implied above, it is currently not possible with traditional data sources to easily disambiguate 
intentional gaps between trips from missing a transfer. For example, a gap in a transfer could 
indicate a delay in the arrival of the second bus, that a bus was missed due to insufficient transfer 
time, or that the rider stopped to get coffee at a nearby shop. Therefore, it would be useful to have 
data mining tools for removing intentional gaps from analyses. Similarly, knowledge of which 
transfers have a high incidence of intentional gaps could be used to identify local resources and 
infrastructure features that are valuable to riders when transferring. 

We use crowdsourced data from the Tiramisu Transit app to create a better understanding of 
where and when poor transfers are occurring in the Pittsburgh region (Steinfeld et al., 2012; 
Tomasic et al., 2015, 2014). We compare these locations with local crime data to infer safety risk. 
The resulting information is provided for use during planning and identification of locations where 
policing, bus shelters, and other infrastructure improvements may facilitate more safe and 
comfortable waits. We use generalizable methods to ensure broader value to both science and 
practitioners. 

3 LITERATURE REVIEW 
Although bus transit planning is well studied, the literature on transfers and on identifying poor 

transfers in particular is sparser. The literature on transit planning that includes transfers often 
assumes or simulates full information about (or probability distributions for) origins and 
destinations (Benenson et al., 2016; Michel and Chidlovskii, 2016; Ngamchai and Lovell, 2003) 
or relies on (real or simulated) ridership data without known O-D pairs (Cevallos and Zhao, 2006; 
Gschwender et al., 2016; Shafahi and Khani, 2010; Zhang et al., 2017). Some studies also relate 
to specific transfer issues such as multi-model transfers (Chung and Shalaby, 2007; Seaborn et al., 
2009) and optimal scheduling and real-time control strategies for timed transfers (Abkowitz et al., 
1987; Chung and Shalaby, 2007; Daganzo and Anderson, 2016; Kieu et al., 2017). Some literature 
focuses on the effect of transfer characteristics and infrastructure on passengers’ perception of 
transit (Fan et al., 2016; Guo and Wilson, 2004; Iseki and Taylor, 2010; Ji et al., 2017). 

More recently, some transit systems have started collecting full origin and destination 
information for many or all trips, making detailed studies possible for those systems, including 
transfers. Jang used city-wide smart card data from Seoul that included boarding information for 
all bus trips and alighting information for most, as the local agency requires tapping before exiting 
the bus in order to get the transfer fare reduction (Jang, 2010). This data allowed Jang to perform 
a full transfer analysis. The study found that 80% of transfers were under 10 minutes and identified 
the most popular transfer locations. The study also identified transfer locations where a significant 
portion of trips involved transfers longer than 10 minutes as places for potential schedule or 
infrastructure improvement.  
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Different methods are needed for the many transit systems that do not collect full passenger 
O-D information. Pinelli et al. (Pinelli et al., 2016) present an alternative method utilizing large-
scale location data from mobile phone networks and deriving frequent patterns of movement to 
generate candidate routes for transit. This method captures movements of large numbers of people 
between two points but does not capture the detail of each user’s exact origin and destination. This 
approach is also not able to differentiate overlapping bus routes. Another approach is to infer O-D 
pairs from whatever fare card data is available (boarding or alighting but not both) (Chu and 
Chapleau, 2008; Gordon et al., 2013; Hanft et al., 2016; Hofmann and O’Mahony, 2005; Ma et al., 
2013; Rahman et al., 2016; Sánchez-Martínez, 2017; Seaborn et al., 2009; Wang et al., 2011; Zhao 
et al., 2017), but this method requires making assumptions about which stops will be involved in 
transfers and so does not provide ground truth. Data from inference models can be used for some 
types of transfer analyses such as reducing the number of trips that require multiple transfers (Hanft 
et al., 2016) but is not useful for fully identifying and characterizing the transfers. 

Our study provides an alternate method based on crowdsourcing for analyzing poor transfers 
in systems where full O-D bus trip information is normally unavailable. 

4 METHODS 
We combined crowdsourced O-D transit rider trip data from the Tiramisu Transit app with 

open and publicly available data from several sources to identify and characterize poor bus 
transfers in the Pittsburgh region. We (1) identified cases when users had provided data on multiple 
trips in close temporal proximity to identify connecting trips, (2) identified which pairs of trips 
were transfers versus other events (such as round trips), (3) examined the spatial and temporal gaps 
during transfers to understand where and when poor transfers were occurring, and (4) combined 
transfer data with crime data to identify potential safety risks.  

4.1 Terminology 
We use the terms transfer to refer to a situation where a transit rider must disembark from one 

bus (or light rail) and board another bus (or light rail) in order to travel to the desired destination. 
The transfer may or may not involve walking between two stops and may or may not include an 
intentionally longer than necessary gap, such as to run an errand near the stop. Although an 
intentional gap to run an errand would more properly mean that the situation is not a transfer but 
rather a trip chain, we refer to both situations as transfers because they cannot be disambiguated 
within the scope of this paper. Unless otherwise specified, we use the word trip to refer to one leg 
of travel by a transit rider from boarding to disembarking. The term device corresponds to the 
unique identifier given by the app to the smartphone it is loaded on. Note that a new number is 
generated if the user reloads the Tiramisu app on a new phone or after deleting the app. Therefore, 
a device ID is a good, but not exact, estimate of a unique user. We will refer to buses throughout 
the paper for convenience, although the dataset also includes a small number of trips taken on light 
rail.  

4.2 Data 
We combined crowdsourced transit ridership data from the Tiramisu Transit app with open 

and publicly available data from several sources. We have limited our analyses to the Pittsburgh, 
PA metro region. 



Traut and Steinfeld (2019) POST-PRINT 5 

 

4.2.1 Crowdsourced Bus Ridership Data from Tiramisu 
During the data collection period used for this study, the Tiramisu Transit app provided users 

with real-time bus arrival information via crowdsourcing in addition to any real-time data available 
from transit agencies. Tiramisu users could trace their trips to contribute to Tiramisu’s real-time 
arrival estimates, which were available before the Pittsburgh bus system started providing AVL 
(automatic vehicle location) data publicly, and which were still available if and when AVL was 
not.  

Tiramisu collected ground truth O-D stop data whenever riders traced their transit trips to 
contribute to real-time estimates. Tiramisu users selected their transit stop in the app to see 
estimated bus arrival times. From there, they could select the bus they would board, select their 
destination stop from a list, choose the fullness of the bus (from options of Empty, Seats Available, 
No Seats Available, or Full), and select “Start Recording” to begin tracing, or sharing location 
information. Tracing automatically stopped when the user neared the destination stop, or they 
could hit a stop button at any time (Tomasic et al., 2015). For more information on the Tiramisu 
app, see Steinfeld et al. 2012 (Steinfeld et al., 2012), Tomasic et al. 2014 (Tomasic et al., 2014), 
and Tomasic et al. 2015 (Tomasic et al., 2015).  

The Tiramisu app collected data on where users were, which transit stops they sought data 
about, and which trips they took (when tracing). The system logged time, date, location, and which 
data was requested per user whenever the app was opened or new data was requested. When 
tracing, the app logged the route, the GTFS trip ID, the user-selected origin and destination stops, 
a user-selected indicator of how full the bus was, and regular timestamped updates on the user’s 
location (trace points) as they progressed along the trip.  

In our Pittsburgh case study, Tiramisu trace data was mostly for bus trips, but also included 
some light rail trips. The Tiramisu database for version 1 of the app was used for this study. It 
contains 862,564 trace points from July 13, 2011 to October 20, 2015. 

Payment on all modes on the Port Authority of Allegheny County system occurred only at the 
start or end of the trip, depending on direction of travel and time of day. There was also a free fare 
zone within the downtown core. Therefore, smartcard data does not contain full ground truth data 
for transfers. Additionally, during the period of data collection for this study, smartcards had not 
been fully adopted by the Port Authority. 

4.2.2 General Transit Feed Specification (GTFS) 
Tiramisu used openly available GTFS data to provide bus and light rail schedule information 

for the Port Authority of Allegheny County (Port Authority of Allegheny County, 2016). We used 
GTFS data for bus routes, scheduled stop times, and stop locations in our analysis. 

According to the GTFS data for the examined time period, there were 7 pairs of stops, all 
located downtown, between which transfers (in both directions) were recommended by the Port 
Authority of Allegheny County, and one pair of stops between which transfers were not possible, 
located in Bridgeville, PA. The GTFS did not specify any timed transfers. 

4.2.3 Map Data 
We used open map data from OpenStreetMap to provide geographical context (major roads, 

minor roads, and rivers) when mapping bus ridership data (OpenStreetMap Contributors, 2016a). 
The Pittsburgh region map data for 2013 was originally obtained from the previous metro extracts 
site (Migurski and OpenStreetMap Contributors, 2013) and the current version is now available 
from Mapzen (OpenStreetMap Contributors, 2016b). 
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4.2.4 Crime Data 
We used 2010 crime data for neighborhoods and planning sectors from PGHSNAP (Pittsburgh 

City Planning, 2012). 

4.3 Data Cleaning to Determine Ground Truth O-D Trips 
Our first step was to clean the trace data from Tiramisu and obtain traced transit riders’ trips 

with ground truth for origin and destination stop locations. This included removing irrelevant parts 
of the Tiramisu data and removing data points with GTFS errors, likely caused by changes in the 
GTFS over time being improperly logged or accounted for in the interface in some past versions 
of the app. Note that in the Tiramisu data the GTFS agency ID variable is used to indicate the 
associated GTFS version for each trace point, because only one agency’s GTFS was logged and it 
had frequent version changes (with every route or schedule change). Also note that in the GTFS 
data a trip (which we will call a “GTFS trip”) refers to the scheduled travel of a bus on a route, 
which differs from our use of the term trip in this paper to refer to one leg of travel by a rider.  

The procedure we used to identify and geolocate bus trips is detailed in Table 1. Once these 
steps were completed, we had a data set consisting of 60,466 ground truth O-D bus or light rail 
trips in the Pittsburgh region including origin stop ID and location, destination stop ID and 
location, trace point locations, and trace point timestamps. Since there is no guarantee that a 
timestamped trace point will exist in close proximity to the origin or destination, origin and 
destination timestamps are not included in this data set at this point in the analysis. 

4.4 Identifying Transfers from Trips 
After bus trips were fully identified, we created a data set of pairs of consecutive trips by the 

same device and developed a method to determine whether these trip pairs were transfers. We first 
took the 60,466 trips found after data cleaning and filtered out instances in which a device traced 
only one trip, removing 7.96% of trips and leaving 55,651 trips from devices that traced multiple 
trips. We then paired these into 50,834 pairs of consecutive trips by the same device. We then 
filtered out trip pairs if the first trace timestamps for each trip (usually close to the trip origins) 
were more than 3 hours apart. Three hours was chosen to be consistent with the Port Authority’s 
fare rules for transfers, which allow a transfer fare if payment for the second ride is made within 3 
hours of when payment was made for the first trip, and as a generous time allowance in case a long 
bus ride may have been followed by a long transfer. Since the transfer is timed (for purposes of 
applying the 3-hour cutoff) from the beginning of one trip to the beginning of the next trip, it 
includes the duration of one of the bus trips in addition to the time spent walking between stops 
and waiting for the next bus. Some Pittsburgh buses have headways of 60 minutes and a long bus 
ride could easily add another 60 minutes or more. (A note about Port Authority rules: because the 
Port Authority system has zone-based fares, payment is made at the beginning of most trips but at 
the end of outbound trips from downtown at certain times of day, though this policy is unevenly 
enforced. For the purposes of the fare policy, the transfer time might sometimes include both legs 
of the transfer and the time between legs. This would happen if a rider took a pay-on inbound trip, 
transferred downtown, and then took an outbound trip during the pay-off time window. For this 
study we used the 3-hour time cutoff but calculated from the beginning of every trip.) 
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Table 1. Procedure for cleaning trace point data and converting trace points to trips with ground truth origin-
destination data. 

Step Description Result 

1. We extracted data for trace points from the Tiramisu database, including 
associated GTFS data. 

862,564 
trace points 

2. We filtered out trace points without valid destinations selected (origin must 
be selected to log a trace point). 

776,880 
trace points  
(9.93% 
removed) 

3. We filtered out trace points with no location data (latitude = 0). 774,587 
trace points  
(0.30% 
removed) 

4. For each trace point we looked up the origin and destination stops in the 
GTFS stop file, added the stop location coordinates to the trace point, and 
filtered out trace points for which the given origin or destination stop ID 
could not be found in the GTFS stop file. 

774,162 
trace points  
(0.055% 
removed) 

5. For each trace point we looked up the route direction (0 =outbound, 1 = 
inbound) in the GTFS trip file, added the route direction to the trace point 
data, and filtered out trace points for which the GTFS trip ID logged in the 
trace data could not be found in the associated GTFS trip file. 

763,900 
trace points  
(1.33% 
removed) 

6. We included only trace points logged while the app was actively tracing 
by filtering out trace points for which the “source” is not “recording”. 

380,622 
trace points  
(50.2% 
removed) 

7. We combined multiple consecutive trace points with the same device, 
origin, destination, route, and direction into one trip and logged the 
location and timestamp of each trace that makes up that trip as well as the 
agency ID, origin ID, destination ID, origin coordinates, destination 
coordinates, route ID, route long and short names, and GTFS trip ID from 
the first trace point, since those should be the same for all trace points that 
make up one trip. 

60,466 
trips 

 
We created maps with vector and point overlays showing the origins, destinations, and trace 

point locations for each pair of trips. We performed a visual inspection of the maps to manually 
label whether each pair of trips was a transfer or some other phenomenon. Some automatic labeling 
was also used to remove round trips and turnarounds from the data set if they were identical to 
previously labeled round trips or turnarounds. The labels used were: 

• Transfer: including transfers with potentially intentional time gaps 
• Round trip: similar starting and ending locations with opposite travel directions 
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• Single trip or turnaround: for cases where the trip identification failed to combine trace 
points that were actually part of a single trip, such as when the bus reaches a turnaround at 
the end of a route and tracing stops automatically but the user restarts tracing 

• Other situations: such as trips that are very short and very close together (sometimes within 
one minute), likely indicating that someone was testing out the app; or trips that are clearly 
much further apart than walking distance, indicating that there was likely another leg of 
non-pedestrian travel between them 

Due to time restrictions on manual labeling, we were able to label only 3198 trip pairs, or 44% 
of the available sample. Of the labelled trip pairs, 915 (28.6%) were found to be transfers, 767 
(24.0%) were round trips, 1077 (33.7%) were actually single trips or bus turnarounds, and 439 
(13.7%) represented some other situation, with many of those being disparate travel legs that 
probably had another leg of non-pedestrian travel between them. 

4.5 Sample Selection for Case Study of the Pittsburgh Region 
Since Tiramisu assigns each device a random ID number, and since we labeled the data in 

order by device ID, using the 44% of the data that we were able to label (given time and resource 
constraints) was equivalent to taking a random sample of available device data. For the purpose of 
this study we assume that a unique device ID is equivalent to a unique user, which is the 
conservative approach for this paper’s analyses. We labeled 3198 trip pairs which included 915 
transfers from 237 devices.  

We further examined the transfers in the sample using visual map inspection to remove 
problematic data from the sample, including transfers where the origin or destination stop provided 
by the user appeared to be different from where they actually traveled given knowledge of the 
region and their trace point locations, so that we were left with only ground truth data for actual 
O-D pairs involved in transfers. This reduced the sample of transfers by 25.8% to 679 transfers 
found from 211 unique devices. 

4.6 Calculating Transfer Characteristics 
4.6.1 Transfer Distances 

Origin and destination stop location coordinates were added to the data during the trip 
identification process. These were used to calculate both a simple straight-line estimate of transfer 
walking according to the haversine formula (Veness, 2016), which represents the best case 
scenario and is shown for comparison, and an adjusted walking distance with a correction factor 
of 2^.5 to represent a walking path that goes around blocks or intersections rather than cutting 
through them diagonally, which is a more conservative estimate and likely more accurate. 
Computing walking distances based on walking route maps is beyond the scope of this study.  
4.6.2 Transfer Durations 

To find the scheduled duration of each transfer, we looked up the scheduled destination stop 
time for the first trip and the scheduled origin stop time for the second trip in the GTFS trip data 
and subtracted those times. At this time, we filtered out any transfer for which either of these stops 
could not be found in the corresponding GTFS schedule (stop_time) data, most likely indicating 
some mismatch between GTFS versions that were in use at the time the data was collected. This 
reduced the sample by 48.5% to 350 transfers from 145 devices. (To improve scalability of the 
labeling procedure in future work, GTFS scheduled stop time data should be added to each trip 
earlier in the process to avoid manually labelling trip pairs that turn out to be ineligible for transfer 
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duration calculations. To improve overall scalability of this data collection method, careful 
attention will be needed in matching GTFS data with the crowdsourced data during collection.) 

To estimate the real-time duration of each transfer, we needed to estimate the real-time arrival 
of the bus at the first trip’s destination and the real-time departure of the bus from the second trip’s 
origin. Tiramisu periodically logs timestamps and locations, which become trace points, but does 
not specifically log timestamps at stops. There may also be some delay between when users board 
a bus and when they start tracing, as well as between when they stop tracing and when they 
disembark. AVL data was not available from the Port Authority for most of this time period. The 
estimation procedure was: 

• To estimate the destination arrival time for the first trip, we used the last (up to) three trace 
points of that trip (or fewer than three if three were not available). To estimate the origin 
departure time for the second trip, we used the first (up to) three trace points of that trip. 

• We looked up the stops along each scheduled GTFS trip and selected the stop in closest 
proximity to each trace point (using the coordinates and the haversine function), then 
looked up the scheduled stop time at that stop. 

• We subtracted to find the time offset between the schedule at the closest stop and the trace 
point, resulting in an approximation of how early or late the bus was running. This method 
should be fairly accurate in places where bus stops are only a few minutes apart. 

• We averaged the time offset from those (up to) three trace points to find an estimated time 
offset at the origin/destination stop of interest and adjusted the scheduled arrival/departure 
time by that amount to estimate the real-time arrival/departure. 

• We subtracted the first trip destination arrival time from the second trip origin departure 
time to find the estimated real-time transfer duration. 

• All negative estimated transfer durations were changed to zero. All traced transfers 
occurred successfully, therefore a negative time estimate, which would have made the 
transfer impossible, must be incorrect. Negative estimated transfer durations indicate a 
poor estimate of real-time bus locations, due to either insufficient data (no trace points 
sufficiently close to the origin/destination) or erroneous data. 

4.6.3 Walking and Waiting Durations 
We calculated the amount of time during each transfer that was spent walking based on an 

assumed walking speed of 3.0 mph along the adjusted distance between stops. If the transfer did 
not have sufficient time available for walking, we used the transfer duration as the walking time, 
though this may indicate that the rider actually ran between buses. 

4.6.4 Removing Outliers 
After calculating the transfer distance and scheduled and actual duration, some outliers in the 

data became apparent. These may indicate anomalies in the data such as user errors in selecting 
which GTFS trip to trace or other GTFS errors. We removed any transfer that had (1) a scheduled 
transfer duration more than 3 standard deviations from the mean, (2) an estimated trip time offset 
more than 2 standard deviations from the mean, or (3) a straight-line distance more than 3 standard 
deviations from the mean. This reduced the sample by 3.4% to 338 transfers from 142 devices. 
Some statistics describing transfer characteristics before and after removing outliers are shown in 
Table 2. 
4.6.5 Transit-Relevant Violent Crime Statistics 
We combined the annual reported incidences per 100 people of murder, rape, robbery, and 
aggravated assault to calculate the relative risk of violent crime for riders transferring or waiting 
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for a bus in each neighborhood/sector. We assumed that burglary, auto thefts, and drug violations 
would be less relevant to pedestrians or people waiting at bus stops. We cross-referenced the crime 
data with the locations of the stops involved in transfers and with the waiting times at those stops. 

Table 2. Descriptive statistics of transfer characteristics before and after removing outliers. 
Metric Before Removing Outliers After Removing Outliers 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Scheduled 
transfer duration 

23.2 minutes 48.8 minutes 23.6 minutes 33.8 minutes 

Estimated real-
time transfer 
duration 

24.1 minutes 33.9 minutes 23.0 minutes 31.7 minutes 

Time offset 6.51 minutes 27.4 minutes 6.44 minutes 9.72 minutes 
Straight-line 
transfer distance 

0.42 km (0.26 
mi.) 

1.47 km (0.91 
mi.) 

0.26 km (0.16 
mi.) 

0.31 km (0.19 
mi.) 

Adjusted transfer 
distance 

0.59 km (0.36 
mi.) 

2.08 km (1.29 
mi.) 

0.37 km (0.23 
mi.) 

0.44 km (0.27 
mi.) 

5 RESULTS AND DISCUSSION 
We found that crowdsourced bus ridership data can be used to identify where and when poor 

transfers are occurring and to characterize those transfers for planning purposes. This has the 
advantage of providing continuous data collection over the study period and being more scalable 
than on the ground survey methods. 

5.1 Transfer Sample Characteristics 
We identified and characterized a sample of 338 transfers in the Pittsburgh region from 142 

unique devices spanning the time period of May 19, 2012 to Jun 25, 2013. Some characteristics of 
these transfers are shown in Figure 1. Figure 1 (a) and (b) show the number of transfers on each 
day of the week and beginning during each hour of the day, respectively. Figure 1 (c) and (d) show 
the total transfer duration on each day of the week and during each hour of the day, respectively, 
with transfers that span multiple hours of the day allocated accordingly. Figure 1 (e) and (f) show 
boxplots of the distributions of transfer durations on each day of the week and beginning during 
each hour of the day, respectively, with the mean durations indicated by diamond markers. Due to 
the lack of buses running in the very early morning hours, we used 3am as the cutoff for the end 
of the day instead of midnight. The primary effect of this decision was to include transfers that 
occurred after midnight on Friday as part of the Friday service day instead of allocating them to 
Saturday. 

As shown in Figure 1, the sample contains transfers on every day of the week. Monday had 
the most transfers and also the shortest mean transfer duration. Monday, Wednesday, Friday, and 
Saturday had higher total transfer durations then Tuesday, Thursday, and Sunday. The number and 
total duration of transfers peaked during the evening rush hour and there were no transfers in the 
middle of the night (when no buses were scheduled). The 75th percentile of transfer durations were 
longest around lunchtime and on Fridays and Saturdays. Determining the reason for this requires 
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 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 
Figure 1. Characteristics of the case study sample of 338 transfers from the Pittsburgh region. Histograms show (a) 
number of transfers per day of week, (b) number of transfers per hour of the day, (c) total duration of transfers per day 
of week, and (d) total duration of transfers during each hour of the day. Box plots, with diamond markers at the mean, 
for quartile distribution of (e) transfer duration on each day of the week and (f) duration of transfers starting during 
each hour of the day, with whiskers extending to the last datum within 1.5 times the interquartile range. Due to the 
lack of buses running in the very early morning hours, we used 3am as the cutoff for the end of the (service) day 
instead of midnight; transfers occurring between midnight and 3am are allocated to the previous day of the week. 
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further study, but possibilities include poor bus routing or scheduling to reach lunch destinations 
or night life locations or riders deliberately extending a transfer by stopping for lunch. 

5.2 Transfer Distance 
Figure 2 shows the distribution of straight-line and adjusted transfer distances. As discussed in 

the methods section, the adjusted distances are likely more accurate and the straight-line distances 
are shown for comparison. 79.9% of the transfers were within a straight-line walking distance of 
0.4 km (0.25 mi.) and 66.6% were within an adjusted walking distance of 0.4 km (0.25 mi.). The 
mean straight-line transfer distance was 0.26 km (0.16 mi.) and the standard deviation was 0.26 
km (0.16 mi.). The mean adjusted transfer distance was 0.37 km (0.23 mi.) and the standard 
deviation was 0.44 km (0.27 mi.). Walking distances longer than 0.4 km (0.25 mi) (i.e., after the 
first four columns of Figure 2) may be poor transfers or may indicate that the rider deliberately 
detoured, perhaps to run an errand. 

 
 (a) (b) 

Figure 2. Histogram of (a) straight-line and (b) adjusted transfer distances showing that the majority of trips are within 
walking distance. 

5.3 Transfer Duration, Walking Time, and Waiting Time 
Figure 3 shows the estimated time offsets between real-time and schedule for all trips involved 

in the sample of transfers. The mean time offset was a short delay of 6.44 minutes with a standard 
deviation of 9.70 minutes. As shown, there is a much larger tail of late buses than early buses. 
Some of the buses that were estimated to be 20 or more minutes early or late may indicate that the 
rider mistakenly chose to trace an earlier or later scheduled GTFS trip than the one they actually 
rode (which is especially likely if the bus was early or late by half or more of the headway time). 

Figure 4 shows a comparison of the scheduled and estimated real-time transfer durations. The 
mean scheduled transfer duration was 23.6 minutes with a standard deviation of 33.8 minutes and 
the mean estimated real-time transfer duration was 23.0 minutes with a standard deviation of 31.7 
minutes. 44.1% of the transfers were estimated to be less than 10 minutes. For comparison, Jang 
found that in Seoul 80% of transfers were less than 10 minutes, but maximum transfer times were 
30 minutes on that system (Jang, 2010). Chu and Chapleau estimated (using an inference-based 
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model) that approximately 65% of transfers in the National Capital Region of Canada were less 
than 10 minutes, perhaps due to coordinated transfers, on a system with headways similar to 
Pittsburgh (Chu and Chapleau, 2008). Pittsburgh does not have timed transfers, and so may be 
expected to have longer transfers than those two systems. The Tiramisu data may also contain a 
self-selection bias towards tracing more in frustrating situations, such as long transfers. 

 
Figure 3. Histogram of estimated time offsets between schedule and real-time. Positive times indicate delayed buses 
and negative times indicate early buses. 

 
 (a) (b) 

Figure 4. Histograms of (a) scheduled transfer durations and (b) estimated real-time transfer durations. 

Negative scheduled durations indicate that, according to the schedule, the transfer was not 
possible, but it was made possible in real-time, likely due to delays. Negative scheduled durations 
could also indicate that an incorrect scheduled GTFS bus trip was selected by the rider, likely due 
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to the bus being either very early or very late. It is likely that estimated transfers with zero duration 
indicate real-time good transfers with very short waiting times. Very short estimated durations 
may also indicate bad transfers that required running instead of walking, a situation that is 
inconvenient for everyone and impossible for some, especially those with some types of 
disabilities. Disambiguating tight walking times from transfers that involved running may be aided 
by a sensitivity analysis on transfer times, but would ideally involve more precise real-time data, 
such as may be obtained from AVL. Transfer durations longer than the scheduled gap between 
buses may be poor transfers due to missed or delayed buses or may indicate that the rider had an 
intentional gap between buses, perhaps to run an errand. For most Port Authority routes, the 
scheduled headway within a route is 60 minutes or less. 

Figure 5 shows histograms of time spent walking between stops (at 3.0 mph along the adjusted 
distance) and excess time spent waiting. As shown, walking times for all transfers were less than 
25 minutes but waiting time has a long tail. Some of the longer waiting times beyond 60 minutes 
likely represent intentional gaps, though further analysis is needed to verify that.  

 
Figure 5. Histogram of transfer time spent walking and transfer time spent waiting. Transfers with negative estimated 
durations were excluded from this analysis. 

5.4 Geographical Distribution and Crime Analysis 
Figure 6 shows the geographical distribution of transfers in the form of a heatmap of the stop 

locations involved in those transfers. As shown, most of the transfers took place in downtown 
Pittsburgh, which is also where all of the recommended transfer stops are specified in the Port 
Authority’s GTFS data. However, there are also several hot spots for transfers elsewhere, including 
several significant ones in the neighborhoods to the east (boxes C3 and C4). Since these have not 
been identified as recommended transfer points, they may not have received as much planning 
attention. 

Figure 6 also shows the rate of violent crimes per 100 people per year in the neighborhoods 
for which Pittsburgh provides data. As shown in box C2 on the map, the crime level downtown 
near most of the transfers is moderate. Downtown is also the neighborhood with all of the 
recommended transfer stops. Some of the popular transfer points to the east of the city (in box C5 
and the top of box C4) and to the south (bottom left of C3) occur in or on the edge of neighborhoods 
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with higher crime. Since actual and perceived levels of personal safety are important factors in 
customer satisfaction with public transit, this should be taken into consideration in planning. 

 
Figure 6. Heatmap of stops involved in transfers overlaid with recommended transfer stop locations and crime data 
on a map of Pittsburgh, PA. The heatmap legend shows colors corresponding to kernel densities of transfers. 

Figure 7 shows waiting time at transfer stops and crime rates in the neighborhood of those 
stops. As shown, 50% of waiting time is spent at transfer stops with crime rates below 0.8 crime 
per 100 people per year. 99% of waiting time is spent at crime rates below 3 crimes per 100 people 
per year. The stops with the highest crime levels also have low waiting times, perhaps not 
coincidentally. Planning attention may be best spent at the stops that have both a (relatively) high 
crime level and many long waiting times, such as those shown in the range of 1.5-3 crimes per 100 
people per year in Figure 7 (a). 

5.5 Transfer Stop Infrastructure 
The results from this study can be compared with the current state of infrastructure at the stops 

involved in transfers to evaluate which stops may be best suited for upgrades to increase comfort, 
accessibility, and safety during transfers and overall satisfaction with public transit. Further work 
is needed to identify infrastructure characteristics at all stops, but in August 2016 a visual 
inspection was performed of one of the clusters of stops involved in a high number of transfers in 
box C3 of Figure 6, along Fifth Avenue in the North Oakland neighborhood from Tennyson to 
Craft. This inspection verified that 6 outbound stops and 4 inbound stops along this corridor had 
no infrastructure except a non-electronic route sign. Street and sidewalk lighting were present but 
were not verified by the authors to provide good nighttime coverage at all stops. Some stops 
additionally had a shelter with a bench: Fifth and Tennyson inbound, Fifth and Bigelow inbound 



Traut and Steinfeld (2019) POST-PRINT 16 

 

and outbound, and Fifth and Chesterfield inbound. Potential infrastructure improvements to better 
accommodate transfers at these stops could include shelters and benches at the stops that lack 
them, additional shelters and benches at the more popular stops to accommodate larger numbers 
of passengers, and electronic signs with real-time arrival information (Ji et al., 2017). Interestingly, 
the recently proposed bus rapid transit plan for Pittsburgh includes stops near these 
underdeveloped transfer locations (Port Authority of Allegheny County, 2017). 

 
 (a) (b) 

Figure 7. Charts showing crime levels and waiting time at the second stop involved in each transfer as a scatter plot 
(a) and as a cumulative distribution (b). Note that the x-axes are on a log scale to better show variations at the low end 
of the scale. 

6 FUTURE DIRECTIONS, GENERALIZABILITY, AND LIMITATIONS 
6.1 Future Directions 

This work lends itself well as a basis for further analysis. One possible extension is developing 
methods for differentiating between intentional gaps and poor or missed transfers to determine 
where and when the worst transfers take place. Another is to differentiate between fast connections 
that are walkable and ones that require running, indicating that some riders would not be able to 
make those transfers. 

This work is also a useful basis for transit planning. The results shown in Figure 6 and Figure 
7 are an example of how these methods can be used to pinpoint stops for further evaluation. Stops 
can be identified as frequently utilized transfer stops, as stops with long wait times, and/or as stops 
with relatively high crime rates. Some of these stops can be targeted for evaluation of existing 
infrastructure and potential improvements to facilitate comfortable and safe waits. Changes could 
also be made in route planning to better accommodate those riders, either by eliminating the need 
to transfer or by reducing wait times. Evaluating when and where long transfers take place during 
inclement weather and in the dark would also be of interest, as these characteristics may influence 
desired infrastructure accommodations. 
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6.2 Generalizability and Scalability 
This method based on crowdsourced data has the potential to be more scalable and 

generalizable than traditional surveys. Once the crowdsourcing platform has been developed and 
debugged, it can be deployed in new locations with much less effort than the first deployment. The 
only requirement for integration with a local transit system is that GTFS data should be available, 
which is widely true. Care should be taken that both the crowdsourcing data and the original GTFS 
data are stored and matched with each other. Depending on the method used to incentivize 
crowdsourcing users, there may be varying amounts of self-selection, both of users and of when 
to trace, but when the primary incentive is to provide information to the transit agency and to other 
users, this may trend towards more tracing in more frustrating situations, which may be the most 
useful data depending on the purpose of the study. Transit surveys, even when conducted online, 
are typically fielded with personnel at bus stops or on transit vehicles, which is unnecessary with 
crowdsourcing, and crowdsourced data collection can take place continuously whenever riders are 
using transit without being dependent on timing of survey personnel shifts or limited to specific 
survey periods. 

Manual data labeling to identify transfers was a significant bottleneck in this study. However, 
with more development time and resources, further automation should be possible (for example 
using travel speed-based methods as discussed in Jang (Jang, 2010)), with the potential for full 
automation of the labeling process leading to fully scalable data processing. 

6.3 Limitations 
There were several limitations to the scope of our case study related to data availability. One 

limitation is that AVL data was not available during the time period of the study. AVL data for the 
real-time location of buses would have increased the accuracy of calculating the transfer durations 
and would facilitate both differentiating missed transfers from intentional gaps in travel and 
differentiating tight walking transfers from transfers that required running. 

Another limitation was the small sample size. This was partially due to the limitation of manual 
data labeling, which could be further automated in future work, and partially due to a problem with 
some versions of Tiramisu app causing a large amount of the trace data to have errors in matching 
with the GTFS data, rendering it unusable without significantly more processing to fix these errors. 

Another data limitation is that when users traced trips in the Tiramisu app, they needed to 
choose not only the route they were taking but also the scheduled GTFS trip. When buses were 
off-schedule or bunched, it could be hard to tell which GTFS trip to select (is the bus running 5 
minutes early or 5 minutes late?). Therefore, some of the trace data may be associated with an 
incorrect scheduled GTFS trip. This could be partially corrected with error detection after-the-fact, 
such as by assuming that a bus is more likely to be somewhat late than to be very early, by matching 
AVL data (if known) with the device’s location, or by tracking schedule drift over time (if enough 
data is available) to determine whether a particular bus is early or late. 

Since we did not collect demographic data for Tiramisu users in this data set, we were not able 
to evaluate how representative our sample was of typical transit riders. Additionally, since 
Tiramisu users chose when to trace, there may be some selection bias not only in selection of users 
but in selection of which trips to trace, and the motivation to provide real-time bus arrival 
information may have prompted more tracing for buses that were off-schedule. 

A limitation in our methodology is the use of straight-line walking distances between bus stops 
with an adjustment factor to account for walking around blocks and intersections. In future work 
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these could be replaced with route-based walking distances, for example using the Google Maps 
API. 

7 CONCLUSIONS 

We used crowdsourcing to identify and characterize a sample of 338 transfers in the Pittsburgh 
region from 142 unique devices spanning the time period of May 19, 2012 to Jun 25, 2013. We 
obtained O-D ground truth stop information for a system that did not have that data available from 
fare cards. We found that 66.6% of the transfers were within an adjusted walking distance of 0.4 
km (0.25 mi.) and 44.1% of the transfers were less than 10 minutes. The mean scheduled transfer 
duration was 23.6 minutes, the mean estimated real-time transfer duration was 23.0 minutes, the 
mean time offset for the individual trips was a delay of 6.44 minutes, and the mean adjusted 
transfer distance was 0.37 km (0.23 mi.). We identified the geographical distribution of transfers 
and found several highly-utilized transfer locations that were not identified by the Port Authority 
of Allegheny County as recommended transfer points, and so might need more planning attention. 
We cross-referenced transfer location and wait time data with crime levels to provide additional 
planning insight, finding that 50% of waiting time is spent at transfer stops with crime rates below 
0.8 crime per 100 people per year and 99% of waiting time is spent at crime rates below 3 crimes 
per 100 people per year. The resulting information resource is provided for use during planning 
and identification of locations where policing, additional bus shelters, and other infrastructure 
improvements may facilitate more safe and comfortable waits or where routing improvements 
could be made. We have shown that crowdsourced public transit ridership data, which is more 
scalable than conducting traditional surveys, can be used to analyze transit transfers, although it 
likely contains self-selection bias. 
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